Metodología de aprendizaje automático cuántico para la predicción de la actividad inhibitoria de fármacos contra la Covid-19
El presente estudio examinó la posibilidad de aplicar un algoritmo cuántico de aprendizaje automático para predecir la actividad inhibitoria de potenciales fármacos contra el coronavirus SARS-CoV-2. Para lograr ello, se empleó un conjunto de datos experimentales conformado por 1904 de compuestos que habían sido previamente identicados. Luego, se determinaron cuatro descripciones moleculares basándose en la estructura de cada compuesto, que funcionaron como dato de entrada para el algoritmo de aprendizaje cuántico; mientras que la actividad inhibitoria experimental se empleó como etiqueta para clasicar los
compuestos como "activos" o "inactivos". Con esta información, se elaboró el algoritmo de entrenamiento cuántico utilizando cuatro qubits en el circuito cuántico. El resultado conseguido tuvo una precisión del 95 %, por lo que estos resultados iniciales resaltan la vialidad de emplear cálculos cuánticos para identicar potenciales moléculas que podrían ser candidatas en la lucha contra el COVID-19.
Disponible en https://cvraulisea.wordpress.com/wp-content/uploads/2025/09/oncti_2025.pdf